Symmetric and asymmetric localized modes in linear lattices with an embedded pair ofχ(2)-nonlinear sites
نویسندگان
چکیده
منابع مشابه
Compactification tuning for nonlinear localized modes in sawtooth lattices.
We discuss the properties of nonlinear localized modes in sawtooth lattices, in the framework of a discrete nonlinear Schrödinger model with general on-site nonlinearity. Analytic conditions for existence of exact compact three-site solutions are obtained, and explicitly illustrated for the cases of power-law (cubic) and saturable nonlinearities. These nonlinear compact modes appear as continua...
متن کاملNonlinear localized modes in two-dimensional electrical lattices.
We report the observation of spontaneous localization of energy in two spatial dimensions in the context of nonlinear electrical lattices. Both stationary and moving self-localized modes were generated experimentally and theoretically in a family of two-dimensional square as well as honeycomb lattices composed of 6 × 6 elements. Specifically, we find regions in driver voltage and frequency wher...
متن کاملLocalized gap modes in nonlinear dimerized Lieb lattices
Compact localized modes of ring type exist in many two-dimensional lattices with a flat linear band, such as the Lieb lattice. The uniform Lieb lattice is gapless, but gaps surrounding the flat band can be induced by various types of bond alternations (dimerizations) without destroying the compact linear eigenmodes. Here, we investigate the conditions under which such diffractionless modes can ...
متن کاملExcitation Thresholds for Nonlinear Localized Modes on Lattices
Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schrödinger (NLS) type. Excitation thresholds are rigorously characterized by varia...
متن کاملOn Symmetric and Asymmetric Buckling Modes of Functionally Graded Annular Plates under Mechanical and Thermal Loads
In the present article, buckling analysis of functionally graded annular thin and moderately thick plates under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate are obtained based on both classical and first order shear deformation plate theories. By using an analytical method, the coupled stability equations are converted to independent equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2012
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.86.013829